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Abstract. The heat-bath frequency distribution, necessary to maintain the canonical commu- 
tation relations for all time for a quantum mechanical oscillator with non-Markovian 
features like memory-dependent damping, is shown to satisfy certain constraint relations. 
An algorithm is given to explicitly find the heat-bath frequency distribution in terms of a 
series expansion for all processes where the timescale for the non-Markovian memory 
kernel is much smaller than the inverse of the strength of damping term. In the non- 
Markovian case, the heat-bath distribution function exhibits dependence on the system 
characteristics. The K M S  periodicity conditions on the system Green functions as the 
system approaches equilibrium are established for the present case. 

1. Introduction 

Recently Streater (1982) investigated the quantum Langevin equation for a harmonic 
oscillator interacting weakly and linearly with a heat bath. Initially, at time t = 0, the 
oscillator can be described by operators q ( 0 )  and p ( 0 )  acting on L 2 ( R ) .  The heat bath 
is assumed to be described by a single variable c$( t )  and its momentum conjugate T( t )  
acting on the Hilbert space I' at times t > 0. The dynamical variables q(  t )  and p (  t )  
act on the full Hilbert space L 2 ( R ) @ r .  The key requirement is the validity of the 
canonical commutation relations for the dynamical variables q(  t )  and p (  t ) for all time 
t > 0. This necessitates the quantum treatment of the heat bath, because otherwise the 
harmonic oscillator variables would violate the canonical commutation relations. 
Streater (1982) also adopted the physical restriction of describing the heat bath in 
terms of the positive frequency modes only. For a Markovian system, where the 
damping is instantaneous and can be described by a constant coefficient, Streater 
(1982) determined the frequency distribution p (  k )  of the heat-bath oscillators. He 
also proved that the K M S  periodicity conditions (Kubo 1957, Martin and Schwinger 
1959), valid for the equilibrium field theory, can be dynamically obtained in the present 
problem by allowing t + CO. 

In the present paper we investigate the problem of a quantum harmonic oscillator 
weakly coupled to a heat bath with damping term described by a memory-dependent 
kernel (MDK).  In the classical case this problem was investigated by Kubo (1966) who 
obtained the fluctuation-dissipation relations. Our object here is to describe the heat 
bath for an arbitrary M D K ,  which may depend on more than one timescale. I t  is 
possible to explicitly determine the heat-bath frequency distribution p (  k )  as a perturba- 
tion series, where the leading term reduces to the distribution for a Markovian process 
when the timescale(s) in the memory kernel T + 0. In the limit where the memory scale 
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T is small, the whole perturbation series can be determined in an  order by order 
treatment. In  addition, a complete set of consistency conditions for p (  k )  for an  arbitrary 
M D K  can be established non-perturbatively. These are of the nature of dispersion 
relations. The K M S  periodicity conditions can be dynamically established for an  
arbitrary M D K  in the equilibrium limit. As a byproduct from the equal-time limit of 
the two-point Green function, one can get the expectation value of the particle density 
in a particular frequency mode. 

The plan of this paper is as follows: we determine the heat-bath frequency distribu- 
tion p (  k )  in Q 2 .  In Q 3 we evaluate the two-point Green function for an  arbitrary M D K  

in the non-equilibrium case and obtain the KMS periodicity conditions in the equilibrium 
limit. We conclude in Q 4, drawing attention to physical results. 

2. Heat-bath frequency distribution 

The equations of motion of a quantum oscillator with an M D K  y ( t )  in the presence 
of an additive heat-bath noise are 

d ( t )  = - C O ( ? )  - J r ( t  - s ) p ( s )  d s +  n(t). 
0 

If a(  t )  and (Y(  t )  are the annihilation operators for the system and heat bath, respectively, 
we can rewrite the equation of motion as 

Li (  f )+ iwa(  r ) +  y (  t - s ) a ( s )  d s  = (Y( t )  (2) I: 
with a ( 0 )  = a,. 

The Fourier-Laplace transforms 

a ( t ) = -  a ( k )  exp(-ikt) dk  
2i r  JOX 
2i r  I: (Y(t)=- p ( k ) a r ( k )  exp(- ik t )dk  

refer only to the positive-frequency mode of the system and the oscillator. The 
characteristics of the bath are described by the distribution function p ( k ) .  The 
frequency modes satisfy the commutation relations 

(3) [a(  k ) ,  (U( k' ) ' ]=  = 6 (  k - k ' ) ,  

The upper sign refers to bosons and the lower sign refers to fermions, respectively. 
The solution of ( 2 )  is given by 

a ( t ) = p ( r ) a o + ~ o ' p ( t - r ) ( Y ( s )  d s  

where p ( t )  is called the admittance function, whose transform p ( k )  is given by 

(4) 

p ( k )  = i[k - w +iY(k)]- '  ( 5 )  



Quantum Langevin equation for a harmonic oscillator 1459 

where f (  k )  is the transform of y (  t ) .  The admittance function is analytic in the upper 
half-plane as p ( t )  = O  for t<0. 

A typical M D K  with a strength y and a timescale for memory T is 
y ( t  - s) = ( y / ~ )  exp(-lt - . + T ) e (  t - s) 

In the limit Y T + O ,  the admittance kernel is 
p ( r )  = (1 + y ~ )  exp[- io( l+ y ~ ) r  - y ( 1 +  yT) ]  

The general form of p ( t )  may be taken as 

- y~ exp[-t/.r+ y (  1 - y r ) r  + i ~ - y ~ t ] .  

p ( t ) = C  c, exp(- io , t - r , t )  

with the constraints 
p , = 1  r, > 0. 
I 

This generalisation takes care of multiple timescales in the memory kernel. The index 
i goes over the poles of p ( k )  in the lower half-plane, each pole relating to a timescale. 

The requirement to be satisfied is 

[ a ( t ) ,  a'(t)IT = 1 for all t > O  (9) 

[a,,  a& = 1. (10) 

where 

We treat the case of bosons and fermions together. From (4), (9) and (10) we have 

Ip( t)I2 + 

( 1 1 )  

3 dkp2(k) [  1' d s  p (  t - s 1 exp( -iks) 

x [lo' ds '  p (  t - s)*  exp(iks') = 1 .  1 
This is the key equation for the subsequent development. As t+m, the admittance 
kernel becomes damped: 

Ip(t)l+ 0. 
Using this, we have from ( 1  1 )  a time-independent relation: 

The limit ?+a is to be understood as t becoming large compared to the largest 
timescale in the memory kernel. The time-dependent part of ( 1 1 )  also leads to 
information about p ( k ) .  To study it, we take the form of p ( t )  as in (8 ) ,  and (11) now 
takes the form 
C c,cF exp[ -i ( W, - U, ) t - ( r , + r, ) t ] 
U 

+ lox d k p '( k [ c,c? exp[ -i( W, - 1 - ( r, + r, t I 
(exp[i( W, - k ) t  + r,t] - 1 

k - W ,  + ir, 
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We will first derive a set of constraints on p ( k )  and later evaluate p ( k )  as a series 
expansion. 

The time-independent part of ( 1 3 )  is 
r x  Z C , C ~  J d k p ’ ( k ) [ ( k - w , + i T , ) ( k - w , - i T , ) ] - ’ =  1 
0 

and the time-dependent part takes the form 

c , c ~ (  exp[ - i ( w ,  - t - (r, + r, ?I  

ex p [ - i ( CO, - CO, ) t - ( I + r, ) t ] 
( k  - CO, +iT , ) (k  - CO, - ir,) 
exp[i(k-w,)t  -r,t] 

- lox ”( k ,  ( k  - CO, + iT, )( k - CO, - i r ,  ) 
exp[ -i( k - CO,) t - rJt] 

( k  - CO, + ir, ) ( k - CO, - i r ,  ) 
) = o .  

In the case of a single pole in p (  k ) ,  (14) and (15 )  lead to the solution obtained by 
Streater (1982). We will adopt a slightly different route and obtain a set of dispersion 
relations obeyed by p 2 ( k ) .  Integrating the third and the fourth terms on the LHS of 
(15) and equating the coefficients of exp[-i(w, -CO,)? -(I-, +I-‘,)?] on both sides, we 
obtain a set of dispersion relations valid for all i and  j ,  

l+Io= d k p ’ ( k ) [ ( k - w , + i T , ) ( k - w , - i T , ) ] - ’  

2 Ti 
- - [ ~ ’ ( c o ,  -ir,)+p’(w, +ir,)]. 

CO, - CO, + i( r, + r,) 
An explicit solution for p 2 ( k )  is also possible in all cases where the M D K  is not too 
far from a Markovian process. What we mean by this is best exemplified by considering 
(7) and (8). The kernel p ( r )  in (7),  when written in the form of (8), gives 

(17) 
C’ 1 + y7 CO1 z= W(l+ YT) Y ( l +  Y7) 
c2= -y7 CO2 = -COY?- r2 = ( 1 / 7 ) ( 1 +  Y 7 )  

where in the limit y7 += 0 we have c2 << c, and in the Markovian limit only c, is present. 
For all cases where all c, ( i  Z 1 )  are O( YTA), where 7, is a timescale in the memory, 
and  only cl survives in limit T A  += 0, we can explicitly solve for p2(  k )  as a perturbation 
series in YTA. For definiteness, we will work with the kernel in (7) and evaluate terms 
in p2( k )  up  to the first order in y7. 

For the rest of the present section, we will use the expansion 

p 2 ( k ) =  Do(k)+ Y7Dl(k)+O(Y7)2. (18 )  
For k < 0, p ( k )  vanishes at all orders of perturbation expansion, i.e. D, ( k  < 0) = 0 for 
all I. 

Using the expansion (18), (14) takes the form 1: dk[Do(k)  + y ~ D , ( k )  +. . . ] { ( 1 + 2 ~ 7 ) [ ( k  - CO’)’+ y;]-l 

- v [ ( k  - C O ’  + i y l ) ( k  -w2-iy2)]-’  

- r r [ ( k  - w l  - iy,)(k - w 2  + iy2)]-l} = I .  
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We equate the terms O( 1) and terms O( YT) separately on both sides of ( l l ) ,  thus 
obtaining 

and 

dkD,(k)[(k-w,) '+ y:] - '  

= - 2 +  Iox dk  Do(k){[(k - w l  + i ~ ~ ) ( k - w , - i y ~ ) ] - ~  

+ [ ( k  - w1 - iy , ) (  k - wz+iy2)]-'}. 

Equation (15) on substitution in the expansion (18) gives 

(1+2yT) e x p ( - 2 ~ , t ) - 2 y T e x p [ - ( ~ , + ~ , ) t ]  cos(w,--w2)t 

+ lom dk[Do( k)  + y ~ D , ( k ) ] [ (  1 + 2 y ~ ) [ (  k - wl) '+r ; ] - '  

x [exp(-2rI t )  - 2  exp(-r , t )  cos(k - w l ) t ]  

- ~ ~ [ ( k - w ~ + i ~ , ) ( k - o ~ - i T , ) ] - ' { e x p [ - i ( o ,  -w,)t-(r,+r,)t] 

-exp[i( k - w , ) t  - r , t ]  -exp[-i( k - w 2 ) t  -r,r]} 

- YT[(k - W ,  - i r , ) ( k  - W ,  +ir,)]-'{exp[i(wl - w 2 ) t  - (r, + r&] 
-exp[-i(k - w , ) t  -I-, t ]  -exp[i(k - w z ) t  - r2f)]}]  = 0. ( 2 2 )  

Equating terms O(1) and O ( ~ T )  separately, we get 
r r  

and 

2 exp[ -(rl +r,)t] COS(O, - w 2 ) t  + dk  Dl( k )  I,: 
x [(k - ~,)~+r:1-'[2 exp(-r ,  t )  cos(w, - w z ) t  -exp( -2rl t ) ]  

+lox dk  D,(k)[(k - w1 +iT,)(k - w2- i r2 ) ] - '  

x {exp[-i(w, - w , ) t  - (I-, + r,)t] -exp[i(k - w , ) t  - r , t ]  
-exp[-i( k - w, ) t  - r2t]} 

+ Iox dk  Do( k)[(k - U ,  -X',)( k - w 2 + i r 2 ) ] - '  

x {exp[i(w, - w J t  - (r ,  + r2)r] - exp[-i( k - w , ) t  - rl  t ]  

- exp[ i (  k - w, )  t - r,r]} = 0. 
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Equation (23) gives the cosine transform 

~ o ~ d k [ D o ( k + w , ) + D o ( - k + ~ l ) ] ( k 2 + ~ ~ ) - ~  cos kt =exp( - r , t ) .  

Since the cosine transform has a unique inverse, we must have 

Do( k + w I ) + Do( - k + w I ) = 2 r  1 / T. 

The general solution of (26) was obtained by Streater. For an  arbitrary measurable 
function Zo( k) in the range 0 s k s W ,  , satisfying 0 S Eo( k )  c 2 r , /  7r and Xo(0) = I-,/ 7r, 
Do( k)  is described by 

for k<O 
for O C  k < w l  
for w , ~ k < 2 w ,  
for k 2 2w,. 

(27) 2T1/7r -&( k - w l )  
Do(k) = 

Given Do(k),  we can solve D , ( k )  by using (21) and  (24); we get 

loE D,(k) [ (k  - w J 2 + r : ] - '  cos(k - w , ) t  d k  

= exp( -r , t )  -1 +f d k  Do( k){[( k - W ,  + X I ) (  k - w2 -ir2)]- '  ( I: 
+[ (k -w,  - i r l ) ( k - - ~ , + i r 2 ) ] - ' }  

+f exp[i(w, - w 2 ) t  - r,t] 

x (-1 -Iso= dkD, , (k) [ (k-w,  -iT,)(k -w2+ir21I- '  

[Do( w1 + iT, ) + Do( w 2  - iT 
2 7ri + 

0, - W2+i(rl  + r,) 

Notice that the terms -exp( - r 2 f )  on the R H S  of (28) vanish on account of (16), which 
is independent of the perturbation expansion used here. This reduces (28) to the 
following form: 

Jox dk[ (k  - w , ) ~ +  r:]-' cos(k - w , ) t  = F ( u , ,  U,;  r , ,  r,) exp( - r , t )  

F ( w , ,  w 2 ;  T I ,  r,) = -1 +$ 

(29) 

where 
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Now the procedure for solving for D l (  k)  is exactly the same as Do( k)  and we enlist 

where X, (k)  is an arbitrary measurable function in the range 0 s  k <  U ,  with the value 
C,(O) = ( T , / r ) F ( w , ,  w 2 ;  r l ,  Tz). This brings forward a novel feature of the non- 
Markovian processes. The solution for D,(k), the term which survives in the Markovian 
limit, is universal in nature. By this we mean that the heat-bath frequency distribution 
is independent of the system frequency w except for the infrared cutoff for the range 
k s w l  . This can be understood that low-frequency modes of the heat bath cannot 
exchange energy with the system, which is at  ground state most of the time. The 
strength of the first non-Markovian term D, (k ) ,  however, depends on the system 
through the function F ( w , ,  w 2 ;  r , ,  r2). 

Thus we have shown that a systematic expansion scheme with the perturbation 
parameter y r  can be developed where, starting from the lowest-order Markovian term, 
terms of any order in y r  can be determined provided those of lower order are already 
known. 

At each order of perturbation in yr, an  undetermined function (e.g. &(k),  Z , (k) ,  
etc) has to be introduced to describe the distribution of heat-bath frequency modes. 
As explained by Streater (1982), they can be obtained by studying the lineshape of 
the spectrum. 

3. Two-point Green function 

The approach to thermal equilibrium of the system is studied by looking at the two-point 
Green function of the system. In particular, we establish the K M S  (anti)periodicity 
condition for the two-point functions for (fermions) bosons in the equilibrium limit 
for an  arbitrary non-Markovian process. In this section, we d o  not use the perturbation 
expansion with the expansion parameter YT used in 9 2 for determination of p2(k).  

The ensemble average for the heat-bath frequency modes is given by 

( a+(k )a (k ' ) ) ,=  n ( k ) a ( k - k ' )  (31) 

where the occupation number per frequency mode is given by 

n (k )  = [exp(pk)T 13-'. (32) 

The upper (lower) sign refers to bosons (fermions). Since we study the Green function 
for the system alone, we have to take an ensemble average over the heat bath. Using 
(41, we determine the system two-point function of two arbitrary times T and T +  t ,  

(a+(  T ) a (  T +  t))n = CL*( TIP(  T +  t)(ahzo)n 

+ lor d k p 2 (  k ) n (  k )  exp( -ikt) 

x ( l o T d s p * ( r )  exp(-iks) ds '  ~ ( s ' )  exp(iks') (33) 
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As T + CO, the first term on the R H S  vanishes and the factors in the parentheses converge 
to 

T - x  lim I o 7 d s p * ( s )  exp(- iks)=p*(k)  

and 

7-o; lim lo7+' d s p ( s )  exp(iks) = p ( k ) .  

Using these results we obtain 
fa, 

G:(t)=*(a&am(t))n=* 1 dkp'(k)n(k))p(k)) 'exp(- ikt) .  
0 

(34) 

Similarly, ( a ( T +  t)a'(  T ) ) ~  converges to 

G,'(t)=(a,(t)a&= d k p 2 ( k ) ( l  *n(k))Ip(k) l*  exp(-ikt). (35) 5: 
At the T+CO limit, the Green functions G:(t) and G,'(t) are translation invariant. 
From (32), (34) and (35 )  it follows that 

Gz( t - ij3) = *GG ( t )  (36)  

which is the KMS condition. The present derivation is given for an arbitrary impedance 
kernel p ( k ) .  The function Gz(t)  is defined in the strip -j3 Im t S O  and Go'(?) is 
defined in the strip j3 3 Im t 3 0. For imaginary times t , ,  (where t = -it,,,,) we can 
therefore define 

Go(tim) = @(L)G<(-i t Im) + o( - t im)G: ( - i f im)  (37)  

which is periodic in t, ,  with a period j3. So far we have considered our system a 
damped harmonic oscillator. If the anharmonic terms are present, the full propagator 
G when it is convergent is given by Dyson's equation, 

G = Go + GOSG (38)  

which leads to the periodicity of G as well. The self-energy function S can contain 
perturbative as well as non-perturbative contributions arising out of the anharmonic 
terms. So the statement about the periodicity of G does not depend on any expansion 
scheme. A similar argument applies to an arbitrary n-point function (Fetter and 
Walecka 1971). So we can conclude that a system with an M D K  in the limit T + w  
reduces to the structure of an equilibrium thermal-field theory. This statement has to 
be understood in a qualified sense. Equation (38)  refers to the imaginary-time Green 
functions. We make the Wick rotation along the imaginary time axis only after the 
real time T + w ,  i.e. the harmonic oscillator Green function has already achieved 
equilibrium and consequently satisfies (36) .  It is assumed that S does not have any 
timescale comparable to T. Stated in a different way, the timescales arising out of the 
local anharmonic terms in the potential are smaller than T and therefore the time 
needed to come to equilibrium is governed by Go alone. This assumption may not be 
valid when tunnelling processes are present. 
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The occupation number operator for the damped harmmic  system averaged over 
the heat bath can be determined explicitly for all time T :  

N ( T ) = ( a t ( T ) a ( T ) h l  

= Ip(T)12(ah),,+ lox d k p 2 ( k ) n ( k )  

x ( loT d s p ( s )  exp(-iks) )( loT ds '  p*(s)  exp(iks') 

The equilibrium limit of the occupation number is 

N =  lim N( T )  
T - x  

(39) 

4. Conclusion 

The present formalism allows a very simple and straightforward description of a 
non-Markovian harmonic oscillator system in the presence of a heat bath. The non- 
Markovian processes are qualitatively different from the Markovian processes. For 
the Markovian processes the heat-bath mode density function p (  k )  is universal in 
nature, i.e. independent of the equilibrating system apart from the infrared cutoff 
frequency. On the other hand, for the non-Markovian processes the heat-bath frequency 
distribution depends on the equilibrating system as well. The KMS periodicity condi- 
tions on the Green function dynamically appear in the equilibrium limit in much the 
same way for a non-Markovian damped system as for a Markovian damped system. 

An alternative formalism of treating the heat-bath degrees of freedom fully dynami- 
cally was initiated by Caldeira and Leggett (1983). By using the path-integral mechan- 
ism, the heat-bath degrees of freedom were integrated out and  a n  effective Lagrangian 
for the system was obtained. In  this formalism the KMS periodicity of the Green 
function in the equilibrium limit has also been proved (Carlitz and Chakrabarti 1987). 
The distribution of the heat-bath frequency modes was obtained from the requirement 
that, in the semiclassical limit, the Langevin equation was satisfied. The formalism 
described in this paper treats the Langevin equation as a quantum mechanical operator 
equation and  canonical (anti)commutation relations remain satisfied for all time; 
therefore it is fully quantum mechanical and  not semiclassical in nature, 
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